Are We Alone in the Universe?

Professor John Lattanzio
Monash Centre for Astrophysics
Monash University
Australia

Tha nks!

1) Honors Carolina
2) Morehead-Cain Scholars Program
3) UNC Department of Physics and Astronomy
for inviting me to serve as the 2018 Morehead-Cain Alumni Visiting
Disfinguished Honors Professor

I: LIFE ON EARTH: COULD IT HAPPEN ELSEWHERE?

II: MAKING ALIENS

III: TALKING WITH ALIENS

First Radio Signal

Start at the top...

- Seems to be a dot at the bottom of various binary numbers
s.

CITHAR

$>$ Remove the dot beneath the numbers:
-

First Radio Signal

A white square $=1 . .$. a black space $=0$

Number systems: Decimal or base 10

- Hopefully, you are familiar with this system!
- We have 9 digits: $1,2,3,4,5,6,7,8$, and 9
- Plus a zero: 0
- Note that there is NO DIGIT for the number ten!
- Instead we use a 1 and a 0 but the POSITION is crucial.
\checkmark For example 132 means: $\quad 132=(1 \times 100)+(3 \times 10)+(2 \times 1)$

$$
=\left(1 \times 10^{2}\right)+\left(3 \times 10^{1}\right)+\left(2 \times 10^{0}\right)
$$

- The digit tells you how many multiples you have for each POWER OF TEN

Number systems: Decimal or base 10

- We use the same system for numbers that are less than one.
- Here we use a decimal point to separate NEGATIVE powers of ten from POSITIVE powers

$$
\begin{aligned}
1.52 & =(1 \times 1)+(5 \times 0.1)+(2 \times 0.01) \\
& =\left(1 \times 10^{0}\right)+\left(5 \times 10^{-1}\right)+\left(2 \times 10^{-2}\right)
\end{aligned}
$$

- Another example:

$$
\begin{aligned}
254.17 & =(2 \times 100)+(5 \times 10)+(4 \times 1)+(1 \times 0.1)+(7 \times 0.01) \\
& =\left(2 \times 10^{2}\right)+\left(5 \times 10^{1}\right)+\left(4 \times 10^{0}\right)+\left(1 \times 10^{0}\right)+\left(7 \times 10^{-1}\right)
\end{aligned}
$$

Other bases?

- But there is no reason why we need to use base 10.
- It probably arose as a result of our ten fingers.
$>$ But there is nothing special about that.
- Lets see what base FIVE looks like.
- Well there are 4 digits: 1,2,3 and 4
- And a zero:0
- BUT NO SYMBOL FOR FIVE...just as there is no symbol for TEN in base 10!
- The number FIVE is now written as $10=1 \times 5+0 \times 1$

$$
=\left(1 \times 5^{1}\right)+\left(0 \times 5^{0}\right)
$$

Number systems: Ba se 5

Counting

Base 5:
Decimal: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11...

$$
\begin{aligned}
132 & =\left(1 \times 5^{2}\right)+\left(3 \times 5^{1}\right)+\left(2 \times 5^{0}\right) \\
& =(1 \times 25)+(3 \times 5)+(2 \times 1) \\
& =25+15+2 \\
& =42 \text { in decimal }
\end{aligned}
$$

$$
=\left(1 \times 5^{0}\right)+\left(4 \times 5^{-1}\right)+\left(2 \times 5^{-2}\right)
$$

$$
=(1 \times 1)+(4 \times 1 / 5)+(2 \times 1 / 25)
$$

$$
=1+0.8+0.08 \text { in decimal }
$$

$$
=1.88 \text { in decimal }
$$

Number systems: Ba se 5

$$
\begin{aligned}
132 & =\left(1 \times 5^{2}\right)+\left(3 \times 5^{1}\right)+\left(2 \times 5^{0}\right) \\
& =(1 \times 25)+(3 \times 5)+(2 \times 1) \\
& =25+15+2 \\
& =42 \text { in decimal }
\end{aligned}
$$

$$
\begin{aligned}
1.42 & =\left(1 \times 5^{0}\right)+\left(4 \times 5^{-1}\right)+\left(2 \times 5^{-2}\right) \\
& =(1 \times 1)+(4 \times 1 / 5)+(2 \times 1 / 25) \\
& =1+0.8+0.08 \text { in decimal } \\
& =1.88 \text { in decimal }
\end{aligned}
$$

Base 16: Hexadecimal

- We can have bases greater than 10, of course
- But we will need more symbols!
- Hexadecimal, or base 16, is often used in computing.
- So we need 15 symbols. Sixteen will be represented as $10=(1 \times 16)+(0 \times 1)$
- The symbols used are 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- Note that in hexadecimal A represents ten

B represents eleven
C represents twelve
D represents thirteen
E represents fourteen
F represents fifteen

Base 16: Hexadecimal

- So how would we represent the number one hundred in hexadecimal?
- Well the digits will represent multiples of 16 .
- The first to the left of the decimal point (hexadecimal point?) tells us how many multiples of 16° there are. 16° is just one of course.
- The second digit to the left tells us how many multiples of 16^{1} are needed.
- The third digit tells us how many multiples of $16^{2}=$ two hundred and fifty six are required.
- So for one hundred we need $(6 \times 16)+(4 \times 1)$ so the hex number for one hundred is 64
- What about two hundred? Now we need twelve $\times 16$ plus 8: ie C8
> One thousand would be 3E8 (check it!)

Base 16: Hexadecimal

- What does this hex number represent?
-

E3.A4

E3.A4 $=\mathrm{E}$ (ie fourteen) times $16^{1}+3 \times 16^{0}+\mathrm{A}$ (ie ten) times $16^{-1}+4$ times 16^{-2}

In decimal form this is: $(14 \times 16)+(3 \times 1)+(10 \times 0.0625)+(4 \times 0.00390625)$
So E3.A4 $=227.640625$

Number systems: Bina ry or Base 2

- Now to the simplest - base 2!
> Here we have ONE symbol...the 1
\checkmark Plus of course the zero.
- As usual, there is no symbol for TWO in a base TWO system!
\rightarrow Two is represented by $10=1 \times 2+0 \times 1$
Counting
Base 2: 1, 10, 41, 100, 101, 110, 111, 1000 .
Base 10: 1, 2, 3, 4, 5, 6, 7, 8...

Number systems: Bina ry or Ba se 2

And we do fractions just as before:

$$
\begin{aligned}
1.01 & =\left(1 \times 2^{0}\right)+\left(0 \times 2^{-1}\right)+\left(1 \times 2^{-2}\right) \\
& =(1 \times 1)+(0 \times 1 / 2)+(1 \times 1 / 4) \\
& =1+0.25 \text { in decimal } \\
& =1.25 \text { in decimal }
\end{aligned}
$$

One more example:

$$
\begin{aligned}
101.101 & =\left(1 \times 2^{2}\right)+\left(0 \times 2^{1}\right)+\left(1 \times 2^{0}\right)+\left(1 \times 2^{-1}\right)+\left(0 \times 2^{-2}\right)+\left(1 \times 2^{-3}\right) \\
& =(1 \times 4)+(0 \times 2)+(1 \times 1)+(1 \times 1 / 2)+(0 \times 1 / 4)+(1 \times 1 / 8) \\
& =4+0+1+0.5+0.0+0.125 \\
& =5.625
\end{aligned}
$$

