Are We Alone in the Universe?

Professor John Lattanzio Monash Centre for Astrophysics Monash University Australia

Thanks!

Honors Carolina
 Morehead-Cain Scholars Program
 UNC Department of Physics and Astronomy

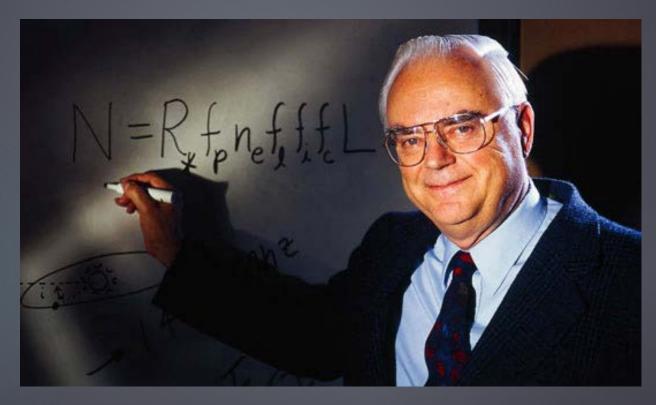
for inviting me to serve as the 2018 Morehead-Cain Alumni Visiting Distinguished Honors Professor

I: LIFE ON EARTH: COULD IT HAPPEN ELSEWHERE?

II: MAKING ALIENS

III: TALKING WITH ALIENS

How Many Civilizations are there? The Drake Equation



It's not quantitative ... but it is informative ...

and can guide our thinking

Let N = number of communicating civilizations in the galaxy right now

N = number of suitable planets in the galaxy

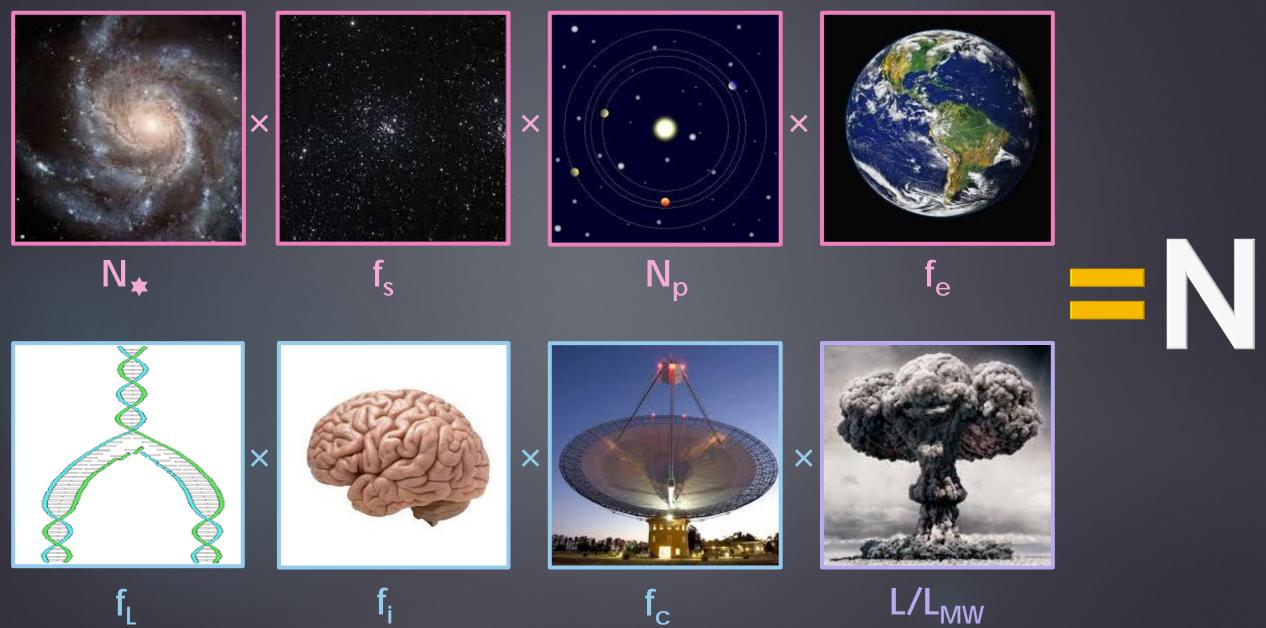
chance of a communicating civilization arising on a suitable planet
 survival fraction

$$N = N_{astro} \times f_{bio} \times (lifetime term)$$

 $= (N_{\star} \times f_{s} \times N_{p} \times f_{e}) \times (f_{L} \times f_{i} \times f_{c}) \times L/L_{MW}$

Investigate each term...

Drake Equation



Number of Stars in the Galaxy

We actually know this pretty accurately!

 $N_{\star} = 3 \times 10^{11}$

- = 300,000,000,000
- = 300 billion
- = 300,000 million

 $N_{\star} = 3 \times 10^{11}$

 N_{\star}

Fraction of stars suitable for life

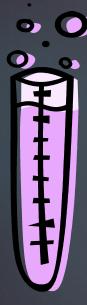
What makes a star suitable?

What do we need from the star? How do stars vary?

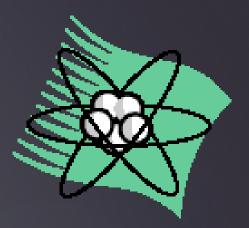
Energy of the Stars

- Most energy we are familiar with is *chemical energy*
- It is released from re-arranging chemical bonds in atoms and molecules
- This is what powers cars, BBQs, and even rockets (as we will see later)

But it does not provide enough energy to power the stars!



Nuclear Energy



The key is Einstein's formula for mass-energy equivalence:

E=mc²

► This relates a change in mass to a change in energy

H "burning" in the Sun

The simplest nuclear reactions involve fusing 4 H nuclei (protons!) into one He⁴ nucleus (an α particle)

 $^{1}H + ^{1}H + ^{1}H + ^{1}H \rightarrow ^{4}He$ Mass of a proton = $m_p = 1.673 \times 10^{-27} \text{ kg}$ Mass of a ${}^{4}\text{He} = m_{\alpha} = 6.645 \times 10^{-27} \text{ kg}$ Difference in mass = "mass defect" $= 4 m_p - m_\alpha$ $= 4.7 \times 10^{-29} \text{ kg}$

H "burning" in the Sun

 \blacktriangleright Each reaction releases an energy $E = mc^2$ So in our case that is $E = (4.7 \times 10^{-29}) \times (3.0 \times 10^{8})^{2} \text{ kg m}^{2}/\text{s}^{2}$ $= 4.3 \times 10^{-12}$ Joule = not much

How far can we lift it?

mm

Poppy seeds....

Take one....

Cut into 1000 pieces.... Take one piece...

But there are lots of reactions!

We can calculate how many of these reactions occur

- The Sun emits 3.90×10^{26} Joule/s
- So that is

 3.90×10^{26} / 4.3×10^{-12} reactions per second

 $= 9 \times 10^{37}$ reactions per second

That is a HUGE number!

How much mass is this?

- ► There are 9 x 10³⁷ reactions per second
- ► Each reaction destroys 4.7 x 10⁻²⁹kg
- So the total mass destroyed each second is: (9 x 10³⁷) x (4.7 x 10⁻²⁹kg) = 4.2 x 10⁹ kg

That's 4.2 million tonnes per second!

How much H burns?

Since we now know how many reactions there are per second...
...we can work out how much H is burned each second.

There are 9×10^{37} reactions Each consumes 4 H nuclei So we burn $4 \times m_p \times 9 \times 10^{37} = 4 \times 1.673 \times 10^{-27}$ kg $\times 9 \times 10^{37}$ $= 6,02 \times 10^{11}$ kg = 602 million tonnes per second!

How much He is produced?

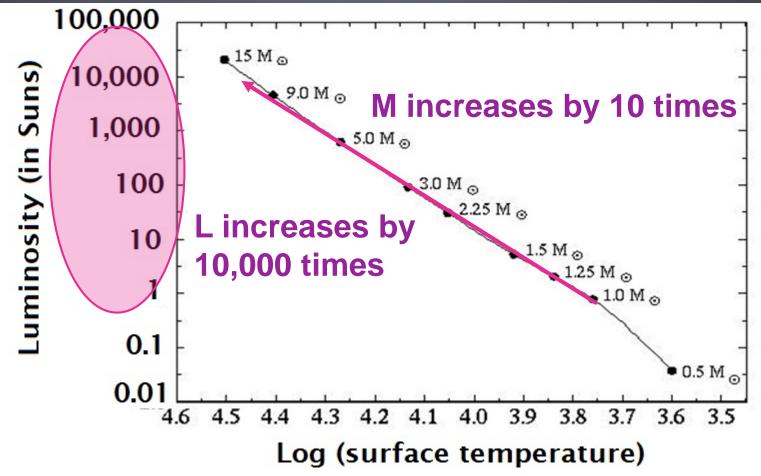
Since we now know how many reactions there are per second...
...we can work out how much He is produced each second.

There are $9 \ge 10^{37}$ reactions Each produces one ⁴He nucleus So we produce $m_{\alpha} \ge 9 \ge 10^{37} = 6.645 \ge 10^{-27} \text{ kg} \ge 9 \ge 10^{37}$ $= 5.98 \ge 10^{11} \text{ kg}$ = 598 million tonnes per second!

And as we might hope – the difference between these is 4 million tonnes as we calculated initially!

The Main Sequence

By making models for different masses we have learned that the Main Sequence is a sequence of stars of different mass



Mass-Luminosity Relation

• One can show that roughly we can relate mass M to luminosity L by: $L \propto M^3$

So to make this an exact equation we insert a constant k which we have to determine: $L = kM^3$

- If we measure mass and luminosity in solar units then k=1 because the Sun has a mass of 1 and a luminosity of 1 ^(C)
- \blacktriangleright The symbol for the Sun is \odot , so we can write the mass-luminosity relation as

$$\frac{L}{L_{\odot}} = \left(\frac{M}{M_{\odot}}\right)^3$$

How does this affect lifetimes of stars?

Stars live while they have fuel to burn

Massive stars burn brightly and use fuel quickly

Massive stars do not live very long…

• The Sun will live for about 10 *billion* years

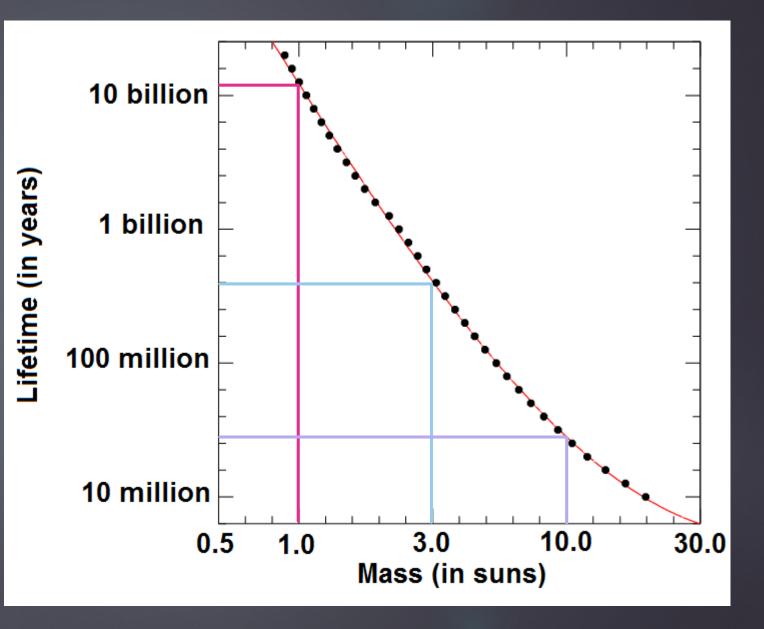
• A 10 solar mass star lives for about 30 *million* years

Stellar Ages

Sun: 10 billion years

M = 3 times Sun: 400 million years

M = 10 times Sun: 30 million years



Mass-age relation

- We can use the mass-luminosity relation to derive a mass-age relation
- ▶ The amount of fuel available is just the mass of the star.
- So the lifetime is the rate of using fuel (the luminosity) divided by the amount of fuel available (the mass)
- ► Lifetime t is proportional to M/L
- Of course the star cannot use all of it mass...it can only burn where it is hot (in the middle)
- So we out in a constant of proportionality again

$$t = k\left(\frac{M}{L}\right) = k\left(\frac{M}{M^3}\right) = \frac{k}{M^2}$$

Mass-age relation

- Lets again measure things in solar units.
- ► The lifetime of the Sun is $t_{\odot} = 10^{10}$ years
- So for a star of a different mass M we get

$$\frac{t}{t_{\odot}} = \left(\frac{M}{M_{\odot}}\right)^{-2}$$

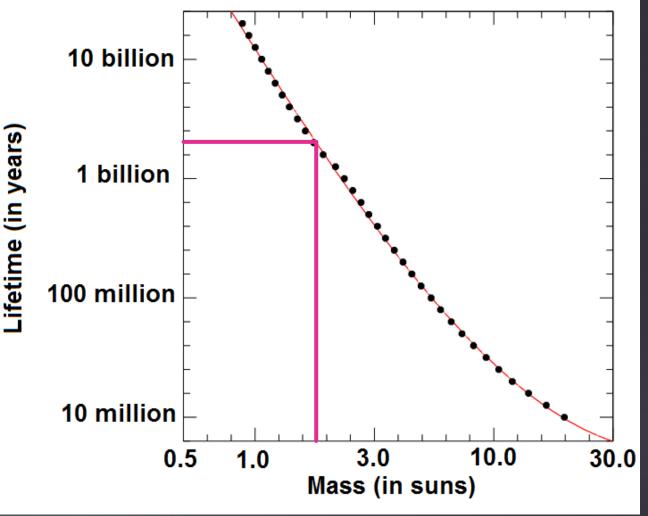
These relations are *approximate*. The values used in lectures are the result of very detailed computer calculations. But the essence is in these simple equations!

How long do we need?

- How long does it take to produce a communicating civilization?
- Clearly we need the star to live at least that long...

► Earth?

0.5 billion years for first life
4 billion years for large life
4.5 billion years for us to develop communication technology



Maybe assume 2 billion years as a minimum?

This gives a maximum mass of about 2 Suns.